What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia?
نویسندگان
چکیده
BACKGROUND Few studies have compared the accuracy of [(18)F]fluorodeoxyglucose (FDG) PET to the accuracy of clinical and pathologic diagnosis in dementia patients. METHODS Forty-four individuals with dementia, cognitive impairment, or normal cognitive function underwent clinical initial evaluation (IE) and PET scanning and were followed up for approximately 4 years until a final evaluation (FE) and 5 years until death and autopsy. Clinical, pathologic, and imaging diagnoses were categorized as Alzheimer disease (AD) or not AD. RESULTS Sensitivity of the IE for the pathologic diagnosis of AD was 0.76, and specificity was 0.58; PET had values of 0.84 and 0.74, and FE had values of 0.88 and 0.63. Positive predictive values for IE, PET, and FE were 0.70, 0.81, and 0.76. Negative predictive values were 0.65, 0.78, and 0.80. The diagnosis of AD was associated with a 70% probability of detecting AD pathology; with a positive PET scan this increased to 84%, and with a negative PET scan this decreased to 31%. A diagnosis of not AD at IE was associated with a 35% probability of AD pathology, increasing to 70% with a positive PET scan. CONCLUSIONS As a diagnostic tool, PET is superior to a baseline clinical evaluation and similar to an evaluation performed 4 years later. Although the addition of [(18)F]fluorodeoxyglucose PET to a clinical diagnosis provides useful information that can affect the likelihood of detecting Alzheimer disease pathology, the value of this technique in the current clinical environment with limited therapeutic options is likely to be modest.
منابع مشابه
The diagnostic difference between 18F- FDG PET and 99mTc-HMPAO SPECT perfusion imaging in assessment of Alzheimer's disease
Introduction:Brain imaging with F-18 fluorodeoxyglucose (18F-FDG) positron emission tomography or Tc-99m hexamethylpropyleneamine oxime (99mTc-HMPAO) SPECT is widely used for the evaluation of Alzheimer's dementia (AD); we aim to assess superiority of one method over the other. Methods: Twenty four patients with clinical diagnosi...
متن کاملAutopsy as gold standard in FDG-PET studies in dementia.
Positron emission tomography (PET) imaging with F18-fluorodeoxyglucose (FDG) is increasingly used as an adjunct to clinical evaluation in the diagnosis of dementia. Considering that most FDG-PET studies in dementia use clinical diagnosis as gold standard and that clinical diagnosis is approximately 80% sensitive or accurate, we aim to review the evidence-based data on the diagnostic accuracy of...
متن کاملFDG PET in Dementia
Positron emission tomography (PET) is a branch of Nuclear Medicine, a new novel way of functional imaging using radioisotopes, which has a significant role in all aspects of dementia-early diagnosis, differential diagnosis, and the assessment of drug treatment. [18F] Fluorodeoxyglucose (FDG) allows measurement of cerebral glucose metabolism both qualitatively and quantitatively. The metabolic a...
متن کاملAmyloid brain PET imaging
Brain positron emission tomography (PET) has also been used over many years to diagnose neurodegenerative diseases, and has advantages over MRI due to its higher sensitivity to detect pathologies at a molecular level. While 18F-fluorodeoxyglucose (FDG) PETCT is an established imaging technique for assisting in the differential diagnosis of Alzheimer’s disease (AD) and other forms of dementia, P...
متن کاملBrain PET in the diagnosis of Alzheimer's disease.
OBJECTIVES The aim of this article was to review the current role of brain PET in the diagnosis of Alzheimer dementia. The characteristic patterns of glucose metabolism on brain FDG-PET can help in differentiating Alzheimer's disease from other causes of dementia such as frontotemporal dementia and dementia of Lewy body. Amyloid brain PET may exclude significant amyloid deposition and thus Alzh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurology
دوره 69 9 شماره
صفحات -
تاریخ انتشار 2007